Electric and Hybrid Vehicles

This comprehensive reference/text provides a thorough grounding in the fundamentals of rotating machinery vibration—treating computer model building, sources and types of vibration, and machine vibration signal analysis. Illustrating turbomachinery, vibration severity levels, condition monitoring, and rotor vibration cause...
An Introduction to Predictive Maintenance: Bearings: from Technology to Practical Design Applications provides a modern study of bearing types, design factors, and industrial examples. The major classes of bearings are described, and design concepts are covered for rolling elements, surfaces, pivots, flexures, and compliance surfaces. Fluid film lubrication is presented, and the basics of tribology for bearings are explained. The book also looks at specific applications of bearing technology, including bearings in vehicles, rotating machinery, machine tools, and home appliances. Case studies are also included.

Foundations of Signal Processing: Diagnosis and correction are critical tasks for the vibrations engineer. Many causes of rotor vibration are so subtle and pervasive that excessive vibration continues to occur despite the use of usually effective design practices and methods of avoidance. Rotating Machinery Vibration: From Analysis to Troubleshooting provides a comprehensive, consolidated overview of the fundamentals of rotating machinery vibration and addresses computer model building, sources and types of vibration, and machine vibration signal analysis. This reference is a powerful tool to strengthen vital in-house competency on the subject for professionals in a variety of fields. After presenting governing fundamental principles and background on modern measurement, computational tools, and troubleshooting methods, the author provides practical instruction and demonstration on how to diagnose vibration problems and formulate solutions. The topic is covered in four sequential sections: Primer on Rotor Vibration, Use of Rotor Dynamic Analyses, Monitoring and Diagnostics, and Troubleshooting Case Studies. This book includes comprehensive descriptions of vibration symptoms for rotor unbalance, dynamic instability, rotor-stator rubs, misalignment, loose parts, cracked shafts, and rub-induced thermal bows. It is an essential reference for mechanical, chemical, design, manufacturing, materials, aerospace, and reliability engineers. Particularly useful as a reference for specialists in vibration, rotating machinery, and turbomachinery, it also makes an ideal text for upper-level undergraduate and graduate students in these disciplines.

Bearings: A practical course in the fundamentals of machinery diagnostics for anyone who works with rotating machinery, from operator to manager, from design engineer to machinery diagnostician. This comprehensive
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition


book thoroughly explains and demystifies important concepts needed for effective machinery malfunction diagnosis: (A) Vibration fundamentals: vibration, phase, and vibration vectors. (B) Data plots: timebase, average shaft centerline, polar, Bode, APHT, spectrum, trend XY, and the orbit. (C) Rotor dynamics: the rotor model, dynamic stiffness, modes of vibration, anisotropic (asymmetric) stiffness, stability analysis, torsional and axial vibration, and basic balancing. Modern root locus methods (pioneered by Walter R. Evans) are used throughout this book. (D) Malfunctions: unbalance, rotor bow, high radial loads, misalignment, rub and looseness, fluid-induced instability, and shaft cracks. Hundreds of full-color illustrations explain key concepts, and several detailed case studies show how these concepts were used to solve real machinery problems. A comprehensive glossary of diagnostic terms is included.

4G: LTE/LTE-Advanced for Mobile Broadband Gives students of automotive engineering a basic understanding of the principles involved with designing a vehicle and includes details of engines and transmissions, vehicle aerodynamics and computer modelling.

Condition Monitoring of Rotating Electrical Machines

Machinery Vibration: Balancing, Special Reprint Edition In the critical work of maintaining power plant machinery, operating difficulties with centrifugal pumps will inevitably occur because of the essential requirement for electric power plants to operate at all times throughout the year. The root causes and solutions for pump failure comprise major areas of study for engineers in seeking the highest availability of electricity-generating units, extending time between major machinery overhauls and providing early detection of potential failure modes well in advance of machine degradation. This guide for engineers provides a comprehensive overview of the fundamentals of centrifugal pumps, addressing the range of pump operating problems encountered in both fossil and nuclear power plants. The book is divided into three sequential parts: Part I - Primer on Centrifugal Pumps, Part II - Power Plant Centrifugal Pump Applications, and Part III - Trouble-Shooting Case Studies. Employing effective research models developed through years of experience, the author draws on an extensive range of scholarship that covers the detrimental impact of power plant pump failures on overall plant performance, as well as the preventative measures that aid in successful pump maintenance. After covering the performance and components of centrifugal pumps,
Operating failure modes are covered both for fossil and nuclear power plants. This is followed by the presentation of several power plant pump troubleshooting case studies. The text also walks readers through the various other industrial applications of centrifugal pumps, as in their use within petrochemical plants and in ocean vessel propulsion systems. Recognizing the warning signs of specific impending pump failure modes is essential to minimizing the financial costs of dealing with pump operating problems. To this end, the author lays out a range of theoretical models and relevant examples in support of the essential work of power plant pump use and maintenance.

Vibration and Acoustics Diagnostics, or fault finding, is a fundamental part of an automotive technician’s work, and as automotive systems become increasingly complex there is a greater need for good diagnostic skills. Advanced Automotive Fault Diagnosis is the only book to treat automotive diagnostics as a science rather than a checklist procedure. Each chapter includes basic principles and examples of a vehicle system followed by the appropriate diagnostic techniques, complete with useful diagrams, flow charts, case studies, and self-assessment questions. The book will help new students develop diagnostic skills and help experienced technicians improve even further. This new edition is fully updated to the latest technological developments. Two new chapters have been added on-board diagnostics and Oscilloscope diagnostics and the coverage has been matched to the latest curricula of motor vehicle qualifications, including: IMI and C&G Technical Certificates and NVQs; Level 4 diagnostic units; BTEC National and Higher National qualifications from Edexcel; International Motor Vehicle qualifications such as C&G 3905; and ASE certification in the USA.

Power Transformer Condition Monitoring and Diagnosis This book is a collection of articles covering the six lecture courses given at the CISM School on this topic in 2008. It features contributions by established international experts and offers a coherent and comprehensive overview of the state-of-the-art research in the field, thus addressing both postgraduate students and researchers in aerospace, mechanical and civil engineering.

Baking Problems Solved Enables you to measure, isolate, and reduce rotating component’s vibration, resonance, or misalignment problem. This book helps you to balance everything from ceiling fans to turbine engines.
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition

This comprehensive and accessible textbook introduces students to the basics of modern signal processing techniques. Fundamentals of Vibrations This book provides readers with a timely snapshot of the potential offered by and challenges posed by signal processing methods in the field of machine diagnostics and condition monitoring. It gathers contributions to the first Workshop on Signal Processing Applied to Rotating Machinery Diagnostics, held in Setif, Algeria, on April 9-10, 2017, and organized by the Applied Precision Mechanics Laboratory (LMPA) at the Institute of Precision Mechanics, University of Setif, Algeria and the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP) at the National School of Engineers of Sfax. The respective chapters highlight research conducted by the two laboratories on the following main topics: noise and vibration in machines; condition monitoring in non-stationary operations; vibro-acoustic diagnosis of machinery; signal processing and pattern recognition methods; monitoring and diagnostic systems; and dynamic modeling and fault detection.
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition

Forsthoffer's Rotating Equipment Handbooks As engineering processes are automated and manpower is reduced, condition monitoring of engineering plants has increased in importance. This is a first edition of this book, written by Taver & Penman was published in 1987. The economics of industry has now changed, as a result of the privatization and deregulation of the energy industry, placing far more emphasis on the importance of the reliable operation of a plant, throughout the whole life-cycle, regardless of first cost. The availability of advanced electronics and software in powerful instrumentation, computers and Digital Signal Processors (DSP) has simplified our ability to instrument and analyze machinery. As a result condition monitoring is now being applied to a wider range of systems, from fault-tolerant drives of a few hundred Watts in the aerospace industry, to machinery of a few hundred Megawatts in major capital plants. In this new book the original authors have been joined by Li Ran an expert in power electronics and control, and Sedding, an expert in the monitoring of electrical insulation systems. The first edition has been revised and expanded merging the authors' own experience with that of machine analysts to bring it up-to-date.

Flow-induced Vibration of Power and Process Plant Components This paper describes an original method of global machine condition assessment for infrared condition monitoring and diagnostics systems. This method integrates two approaches: the first is processing and analysis of infrared images in the frequency domain by the use of 2D Fourier transform and a set of F-image features, the second uses fusion of classification results obtained independently for F-image features. To find the best condition assessment solution, the two different types of classifiers, k-nearest neighbours and support vector machine, as well as data fusion method based on Dezert Smarandache theory have been investigated. This method has been verified using infrared images recorded during experiments performed on the laboratory model of rotating machinery. The results obtained during the research confirm that the method could be successfully used for the identification of operational conditions that are difficult to be recognised.

Vibration-based Condition Monitoring Rotating Machinery Research and Development Test Rigs presents the purpose and development processes for test apparatuses built for Research & Development in machinery technology and product development. Each R & D apparatus is the focus of an entire chapter, with fifteen detailed case studies included from...
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition

Special machinery components covered include bearings, seals, power plant pumps, rotors, turbines and compressors. Machinery condition monitoring and product development processes have been integrated. The specific purpose and results for each test rig are comprehensively presented and explained.

Fundamentals of Rotating Machinery Diagnostics Vibration Problems in Machines explains how to infer information about the internal operations of rotating machines from external measurements through methods used to resolve practical plant problems. Second edition includes summary of instrumentation, methods for establishing machine rundown data, relationship between the rundown curves and the ideal frequency response function. The section on balancing has been expanded and examples are given on the strategies for balancing a rotor with a bend, with new section on instabilities. It includes case studies with real plant data, MATLAB® scripts and functions for the modelling and analysis of rotating machines.

Practical Machinery Vibration Analysis and Predictive Maintenance As the most important parts of rotating machinery, rotors are also the most prone to mechanical vibrations, which may lead to machine failure. Correction is only possible when proper and accurate diagnosis is obtained through understanding of rotor operation and all of the potential malfunctions that may occur. Mathematical modeling, in particular modal modeling, is key to understanding observed phenomena through measured data and for predicting and preventing failure. Rotordynamics advances simple yet adequate models of rotordynamic problems and phenomena related to rotor operation in its environment. Based on Dr. Muszyńska's extensive work at Bently Rotor Dynamics Research Corporation, world renowned for innovative and groundbreaking experiments in the field, this book provides realistic models, step-by-step experimental methods, and the principles of vibration monitoring and practical malfunction diagnostics of rotating machinery. It covers extended rotor models, rotor/fluid-related phenomena, rotor-to-stationary part rubbing, and other related problems such as nonsynchronous perturbation testing. The author also illustrates practical diagnoses of several possible malfunctions and emphasizes correct interpretation of computer-generated numerical results. Rotordynamics is the preeminent guide to rotordynamic theory and practice. It is the most valuable tool available for anyone working on...
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition

The text contains a detailed discussion on the fundamentals of rotating machinery diagnostics. It covers computer simulation models used in industry and contains fundamental physical phenomena, mathematical and computational aspects, practical hardware considerations, troubleshooting, and instrumentation and measurement techniques. It is aimed at students interested in entering this specialized field as well as professionals seeking to expand their knowledge base.

For Power Plant Centrifugal Pumps, the book provides engineers and scientists with practical fundamentals for turbomachinery design. It presents a detailed analysis of existing procedures for the analysis of rotor and structure dynamics while keeping mathematical equations to a minimum. Specific terminologies are used for rotors and structures, respectively, allowing readers to clearly distinguish between the two. The book also describes the essential concepts needed to understand rotor failure modes due to lateral and torsional oscillations. It guides the reader from simple single-degree-of-freedom models to the most complex multi-degree-of-freedom systems and provides useful information concerning steel pedestal stiffness degradation and other structural issues.

The main body of the book focuses on the diagnostics and description of case studies addressing the most pressing practical issues, along with their successful solutions, offering a valuable reference guide to help field engineers manage day-to-day issues with turbomachinery.
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition

Randall presents classic and state-of-the-art research results that cover vibration signals from rotating and reciprocating machines; basic signal processing techniques; fault detection; diagnostic techniques, and prognostics. Developed out of notes for a course in machine condition monitoring given by Robert Bond Randall over ten years at the University of New South Wales, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications is essential reading for graduate and postgraduate students/researchers in machine condition monitoring and diagnostics as well as condition monitoring practitioners and machine manufacturers who want to include a machine monitoring service with their product. Includes a number of exercises for each chapter, many based on Matlab, to illustrate basic points as well as to facilitate the use of the book as a textbook for courses in the topic. Accompanied by a website www.wiley.com/go/randall housing exercises along with data sets and implementation code in Matlab for some of the methods as well as other pedagogical aids. Authored by an internationally recognised authority in the area of condition monitoring.

Advanced Automotive Fault Diagnosis This book provides readers with a snapshot of recent methods for non-stationary vibration analysis of machinery. It covers a broad range of advanced techniques in condition monitoring of machinery, such as mathematical models, signal processing and pattern recognition methods and artificial intelligence methods, and their practical applications to the analysis of nonstationarities. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO 2016, held on September 12-16, 2016, in Gliwice, Poland. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. By presenting state-of-the-art in predictive maintenance solutions and discussing important industrial issues the book offers a valuable resource to both academics and professionals and is expected to facilitate communication and collaboration between the two groups.

Rotating Machinery Research and Development Test Rigs This must-read
Power transformer monitoring will incorporate current power transformer condition monitoring techniques from principles to practice. Each chapter will cover the fundamentals and theory of the topic, convey techniques to measure relevant parameters, and assess or interpret the results. The book will include factory acceptance tests, receiving end pre-commissioning tests, and commissioning tests. It will also include the limitations and challenges, and approaches to overcome these limitations.

Transformers: Basics, Maintenance, and Diagnostics Baking Problems Solved, Second Edition, provides a fully revised follow-up to the innovative question and answer format of its predecessor. Presenting a quick bakery problem-solving reference, Stanley Cauvain returns with more practical insights into the latest baking issues. Retaining its logical and methodical approach, the book guides bakers through various issues which arise throughout the baking process. The book begins with issues found in the use of raw materials, including chapters on wheat and grains, flour, and fats, amongst others. It then progresses to the problems that occur in the intermediate stages of baking, such as the creation of doughs and batters, and the input of water. Finally, it delves into the difficulties experienced with end products in baking by including chapters on bread and fermented products, cakes, biscuits, and cookies and pastries. Uses a detailed and clear question and answer format that is ideal for quick reference Combines new, up-to-date problems and solutions with the best of the previous volume Presents a wide range of ingredient and process solutions from a world-leading expert in the baking industry

Rotor Systems Transformers have been used at power plants since the inception of alternating-current generation, a century ago. While operating principles of transformers remain the same, the challenges of maintaining and testing transformers have evolved along with transformer design and construction. This book is about the basics, maintenance and diagnostics of transformers.

Machinery Vibration and Rotordynamics This book provides a comprehensive treatment of the principles of design and means for realization of passive vibration isolation systems for real life objects. A special emphasis is given to effective techniques and methods that are not yet widely used in the practice of vibration isolation in industry. The book is written with practitioners in mind and many of the problems
Passive Vibration Isolation This book addresses a range of complex issues associated with condition monitoring (CM), fault diagnosis and detection (FDD) in smart buildings, wide area monitoring (WAM), wind energy conversion systems (WECSs), photovoltaic (PV) systems, structures, electrical systems, mechanical systems, smart grids, etc. The book's goal is to develop and combine all advanced nonintrusive CMFD approaches on a common platform. To do so, it explores the main components of various systems used for CMFD purposes. The content is divided into three main parts, the first of which provides a brief introduction, before focusing on the state of the art and major research gaps in the area of CMFD. The second part covers the step-by-step implementation of novel soft computing applications in CMFD for electrical and mechanical systems. In the third and final part, the simulation codes for each chapter are included in an extensive appendix to support newcomers to the field.

Power Transformer Diagnostics, Monitoring and Design Features

Machinery Vibration Analysis and Predictive Maintenance provides a detailed examination of the detection, location and diagnosis of faults in rotating and reciprocating machinery using vibration analysis. The basics and underlying physics of vibration signals are first examined. The acquisition and processing of signals is then reviewed followed by a discussion of machinery fault diagnosis using vibration analysis. Hereafter the important issue of rectifying faults that have been identified using vibration analysis is covered. The book also covers the other techniques of predictive maintenance such as oil and particle analysis, ultrasound and infrared thermography. The latest approaches and equipment used together with the latest techniques in vibration analysis emerging from current research are also highlighted. Understand the basics of vibration measurement Apply vibration analysis for different machinery faults Diagnose machinery-related problems with vibration analysis techniques

The Practical Vibration Primer Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal...
hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety. Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. Contributions from the worlds leading industry and research experts Executive summaries of specific case studies Information on basic research and application approaches Advanced Multifunctional Lightweight Aerostructures Vibrations and Acoustics: Measurement and Signal Analysis is the culmination of the author's more than two decades of teaching and research experience in these areas. It will serve as a source of reference for postgraduate students, researchers, academicians, practicing engineers and professionals in the field of vibration and acoustics.

Rotating Machinery and Signal Processing This second edition of An Introduction to Predictive Maintenance helps plant, process, maintenance and reliability managers and engineers to develop and implement a comprehensive maintenance management program, providing proven strategies for regularly monitoring critical process equipment and systems, predicting machine failures, and scheduling maintenance accordingly. Since the publication of the first edition in 1990, there have been many changes in both technology and methodology, including financial implications, the role of a maintenance organization, predictive maintenance techniques, various analyses, and maintenance of the program itself. This revision includes a complete update of the applicable chapters from the first edition as well as six additional chapters outlining the most recent information available. Having already been implemented and maintained successfully in hundreds of manufacturing and process plants worldwide, the practices detailed in this second edition of An Introduction to Predictive Maintenance will save plants and corporations...
Access Free Fundamentals Of Rotating Machinery Diagnostics 1st First Edition

as well as U.S. industry as a whole, billions of dollars by minimizing unexpected equipment failures and its resultant high maintenance cost while increasing productivity. A comprehensive introduction to a system of monitoring critical industrial equipment Optimize the availability of process machinery and greatly reduce the cost of maintenance Provides the means to improve product quality, productivity and profitability of manufacturing and production plants

Machinery Malfunction Diagnosis and Correction Specific, practical guidance for every individual involved with solving process machinery problems. The single source reference for explanations of fundamental machinery behavior, static and dynamic measurements, plus data acquisition, processing and interpretation. A variety of lateral and torsional analytical procedures, and physical tests are presented and discussed. Method of classification of global machine conditions based on spectral features of infrared images and classifiers fusion This book is a printed edition of the Special Issue "Power Transformer Diagnostics, Monitoring and Design Features" that was published in Energies

Vibration Problems in Machines Fundamentals of Vibrations provides a comprehensive coverage of mechanical vibrations theory and applications. Suitable as a textbook for courses ranging from introductory to graduate level, it can also serve as a reference for practicing engineers. Written by a leading authority in the field, this volume features a clear and precise presentation of the material and is supported by an abundance of physical explanations, many worked-out examples, and numerous homework problems. The modern approach to vibrations emphasizes analytical and computational solutions that are enhanced by the use of MATLAB. The text covers single-degree-of-freedom systems, two-degree-of-freedom systems, elements of analytical dynamics, multi-degree-of-freedom systems, exact methods for distributed-parameter systems, approximate methods for distributed-parameter systems, including the finite element method, nonlinear oscillations, and random vibrations. Three appendices provide pertinent material from Fourier series, Laplace transformation, and linear algebra.

Automotive Engineering Fundamentals This book focuses on LTE with full updates including LTE-Advanced (Release-11) to provide a complete picture of the LTE system. Detailed explanations are given for the latest...
LTE standards for radio interface architecture, the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance. Key technologies presented include multi-carrier transmission, advanced single-carrier transmission, advanced receivers, OFDM, MIMO and adaptive antenna solutions, radio resource management and protocols, and different radio network architectures. Their role and use in the context of mobile broadband access in general is explained, giving both a high-level overview and more detailed step-by-step explanations. This book is a must-have resource for engineers and other professionals in the telecommunications industry, working with cellular or wireless broadband technologies, giving an understanding of how to utilize the new technology in order to stay ahead of the competition. New to this edition: In-depth description of CoMP and enhanced multi-antenna transmission including new reference-signal structures and feedback mechanisms. Detailed description of the support for heterogeneous deployments provided by the latest 3GPP release. Detailed description of new enhanced downlink control-channel structure (EPDDCH). New RF configurations including operation in non-contiguous spectrum, multi-bands base stations and new frequency bands. Overview of 5G as a set of well-integrated radio-access technologies, including support for higher frequency bands and flexible spectrum management, massive antenna configurations, and ultra-dense deployments. Covers a complete update to the latest 3GPP Release-11. Two new chapters on HetNet, covering small cells/heterogeneous deployments, and CoMP, including Inter-site coordination. Overview of current status of LTE release 12 including further enhancements of local-area, CoMP and multi-antenna transmission, Machine-type-communication, Device-to-device communication.

Rotating Machinery Vibration Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26-28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland, March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in non-stationary operations have a different behavior compared to the one used in stationary operations. The behavior of machinery is influenced by several factors, such as the type of machinery, the operating conditions, and the environment. The goal of condition monitoring is to detect any deviations from the normal behavior, which can be indicative of a fault or deterioration of the machinery. Condition monitoring is a powerful tool for improving the reliability and availability of machinery, reducing downtime and maintenance costs, and ensuring the safe operation of machinery.
different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers are divided into five sections, namely: Condition monitoring of machines in non-stationary operations Modeling of dynamics and fault in systems Signal processing and Pattern recognition Monitoring and diagnostic systems Noise and vibration of machines The presented book gives the background to the main objective of the CMMNO 2012 conference that is to bring together scientific community to discuss the major advances in the field of machinery condition monitoring in non-stationary conditions.

Rotating Machinery Vibration IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This second volume covers the following main topics: condition monitoring, fault diagnostics and prognostics; modal testing and identification; parametric and self-excitation in rotor dynamics; uncertainties, reliability and life predictions of rotating machinery; and torsional vibrations and geared systems dynamics.

Condition Monitoring of Machinery in Non-Stationary Operations Offers a review of the newest methodologies for the characterization and modelling of lightweight materials and structures Advances in Multifunctional Lightweight Structures offers a text that provides an in-depth analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures. The authors, noted experts on the topic, address the most recent and innovative methodologies for the characterization and modelling of lightweight materials and discuss various shell and plate theories. They present multifunctional materials and structures and offer detailed descriptions of the complex modelling of these structures. The text is divided into three sections that demonstrate a keen understanding. 
The book explores multi-disciplinary modelling and characterization alongside benchmark problems and applications, topics that are rarely approached in this field. This important book:

- Offers an analysis of the thermal, electrical and mechanical responses of multi-functional lightweight structures.
- Covers innovative methodologies for the characterization and modelling of lightweight materials and structures.
- Presents a characterization of a wide variety of novel materials.
- Considers multifunctional novel structures with potential applications in different high-tech industries.
- Includes efficient and highly accurate methodologies.

Written for professionals, engineers and researchers in industrial and other specialized research institutions, Advances in Multifunctional Lightweight Structures offers a much-needed text to the design practices of existing engineering building services and how these methods combine with recent developments.